168 research outputs found

    Potential Role of Protein Kinase B in Insulin-induced Glucose Transport, Glycogen Synthesis, and Protein Synthesis

    Get PDF
    Various biological responses stimulated by insulin have been thought to be regulated by phosphatidylinosi-tol 3-kinase, including glucose transport, glycogen syn-thesis, and protein synthesis. However, the molecular link between phosphatidylinositol 3-kinase and these biological responses has been poorly understood. Re-cently, it has been shown that protein kinase B (PKB/c-Akt/ Rac) lies immediately downstream from phosphati-dylinositol 3-kinase. Here, we show that expression of a constitutively active form of PKB induced glucose up-take, glycogen synthesis, and protein synthesis in L6 myotubes downstream of phosphatidylinositol 3-kinase and independent of Ras and mitogen-activated protein kinase activation. Introduction of constitutively active PKB induced glucose uptake and protein synthesis but not glycogen synthesis in 3T3L-1 adipocytes, which lack expression of glycogen synthase kinase 3 different from L6 myotubes. Furthermore, we show that deactivation of glycogen synthase kinase 3 and activation of rapamy-cin- sensitive serine/threonine kinase by PKB in L6 myo-tubes might be involved in the enhancement of glycogen synthesis and protein synthesis, respectively. These re-sults suggest that PKB acts as a key enzyme linking phosphatidylinositol 3-kinase activation to multiple bi-ological functions of insulin through regulation of downstream kinases in skeletal muscle, a major target tissue of insulin

    Anomalous magnetic phase in an undistorted pyrochlore oxide Cd2Os2O7 induced by geometrical frustration

    Full text link
    We report on the muon spin rotation/relaxation study of a pyrochlore oxide, Cd2Os2O7, which exhibits a metal-insulator (MI) transition at T_{MI}~225 K without structural phase transition. It reveals strong spin fluctuation (>10^8/s) below the MI transition, suggesting a predominant role of geometrical spin frustration amongst Os^{5+} ions. Meanwhile, upon further cooling, a static spin density wave discontinuously develops below T_{SDW}~150 K. These observations strongly suggest the occurrence of an anomalous magnetic transition and associated change in the local spin dynamics in undistorted pyrochlore antiferromagnet.Comment: 5 pages, 4 figure

    STM observation of electronic wave interference effect in finite-sized graphite with dislocation-network structures

    Full text link
    Superperiodic patterns near a step edge were observed by STM on several-layer-thick graphite sheets on a highly oriented pyrolitic graphite substrate, where a dislocation network is generated at the interface between the graphite overlayer and the substrate. Triangular- and rhombic-shaped periodic patterns whose periodicities are around 100 nm were observed on the upper terrace near the step edge. In contrast, only outlines of the patterns similar to those on the upper terrace were observed on the lower terrace. On the upper terrace, their geometrical patterns gradually disappeared and became similar to those on the lower terrace without any changes of their periodicity in increasing a bias voltage. By assuming a periodic scattering potential at the interface due to dislocations, the varying corrugation amplitudes of the patterns can be understood as changes in LDOS as a result of the beat of perturbed and unperturbed waves, i.e. the interference in an overlayer. The observed changes in the image depending on an overlayer height and a bias voltage can be explained by the electronic wave interference in the ultra-thin overlayer distorted under the influence of dislocation-network structures.Comment: 8 pages; 6 figures; Paper which a part of cond-mat/0311068 is disscussed in detai

    Heavy--light mesons in a bilocal effective theory

    Full text link
    Heavy--light mesons are described in an effective quark theory with a two--body vector--type interaction. The bilocal interaction is taken to be instantaneous in the rest frame of the bound state, but formulated covariantly through the use of a boost vector. The chiral symmetry of the light flavor is broken spontaneously at mean field level. The framework for our discussion of bound states is the effective bilocal meson action obtained by bosonization of the quark theory. Mesons are described by 3--dimensional wave functions satisfying Salpeter equations, which exhibit both Goldstone solutions in the chiral limit and heavy--quark symmetry for mQm_Q\rightarrow\infty. We present numerical solutions for pseudoscalar DD-- and BB--mesons. Heavy--light meson spectra and decay constants are seen to be sensitive to the description of chiral symmetry breaking (dynamically generated vs.\ constant quark mass).Comment: (34 p., standard LaTeX, 7 PostScript figures appended) UNITUE-THEP-17/9

    Magnetic properties of the S=1/2S=1/2 distorted diamond chain at T=0

    Full text link
    We explore, at T=0, the magnetic properties of the S=1/2S=1/2 antiferromagnetic distorted diamond chain described by the Hamiltonian {\cal H} = \sum_{j=1}^{N/3}{J_1 ({\bi S}_{3j-1} \cdot {\bi S}_{3j} + {\bi S}_{3j} \cdot {\bi S}_{3j+1}) + J_2 {\bi S}_{3j+1} \cdot {\bi S}_{3j+2} + J_3 ({\bi S}_{3j-2} \cdot {\bi S}_{3j} + {\bi S}_{3j} \cdot {\bi S}_{3j+2})} \allowbreak - H \sum_{l=1}^{N} S_l^z with J1,J2,J30J_1, J_2, J_3\ge0, which well models A3Cu3(PO4)4{\rm A_3 Cu_3 (PO_4)_4} with A=Ca,Sr{\rm A = Ca, Sr}, Bi4Cu3V2O14{\rm Bi_4 Cu_3 V_2 O_{14}} and azurite Cu3(OH)2(CO3)2\rm Cu_3(OH)_2(CO_3)_2. We employ the physical consideration, the degenerate perturbation theory, the level spectroscopy analysis of the numerical diagonalization data obtained by the Lanczos method and also the density matrix renormalization group (DMRG) method. We investigate the mechanisms of the magnetization plateaux at M=Ms/3M=M_s/3 and M=(2/3)MsM=(2/3)M_s, and also show the precise phase diagrams on the (J2/J1,J3/J1)(J_2/J_1, J_3/J_1) plane concerning with these magnetization plateaux, where M=l=1NSlzM=\sum_{l=1}^{N} S_l^z and MsM_s is the saturation magnetization. We also calculate the magnetization curves and the magnetization phase diagrams by means of the DMRG method.Comment: 21 pages, 29 figure

    1D Frustrated Ferromagnetic Model with Added Dzyaloshinskii-Moriya Interaction

    Full text link
    The one-dimensional (1D) isotropic frustrated ferromagnetic spin-1/2 model is considered. Classical and quantum effects of adding a Dzyaloshinskii-Moriya (DM) interaction on the ground state of the system is studied using the analytical cluster method and numerical Lanczos technique. Cluster method results, show that the classical ground state magnetic phase diagram consists of only one single phase: "chiral". The quantum corrections are determined by means of the Lanczos method and a rich quantum phase diagram including the gapless Luttinger liquid, the gapped chiral and dimer orders is obtained. Moreover, next nearest neighbors will be entangled by increasing DM interaction and for open chains, end-spins are entangled which shows the long distance entanglement (LDE) feature that can be controlled by DM interaction.Comment: 8 pages, 9 figure

    The phase diagram of the extended anisotropic ferromagnetic-antiferromagnetic Heisenberg chain

    Full text link
    By using Density Matrix Renormalization Group (DMRG) technique we study the phase diagram of 1D extended anisotropic Heisenberg model with ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor interactions. We analyze the static correlation functions for the spin operators both in- and out-of-plane and classify the zero-temperature phases by the range of their correlations. On clusters of 64,100,200,30064,100,200,300 sites with open boundary conditions we isolate the boundary effects and make finite-size scaling of our results. Apart from the ferromagnetic phase, we identify two gapless spin-fluid phases and two ones with massive excitations. Based on our phase diagram and on estimates for the coupling constants known from literature, we classify the ground states of several edge-sharing materials.Comment: 12 pages, 13 figure

    Exact degenerate ground states for the F-AF spin chain with bond alternation

    Full text link
    We investigate the J1J_1-J2J_2 spin chain consisting of spins with magnitude 12\frac12. The nearest-neighbor and the next-nearest-neighbor exchange interactions are ferromagnetic and antiferromagnetic, respectively, and induce strong frustration. Both these interactions involve the bond alternation. We find exact solutions for all the degenerate ground states on the phase boundary of the ferromagnetic phase. The degeneracy remains irrespective of two parameters representing the bond alternation. The exact solutions are of closed forms for no bond alternation and of recursion formulae in general. The exact solutions are applicable to the Δ\Delta chain as a special case.Comment: 4 pages, 2 figure

    Heterochronic faecal transplantation boosts gut germinal centres in aged mice

    Get PDF
    Ageing is a complex multifactorial process associated with a plethora of disorders, which contribute significantly to morbidity worldwide. One of the organs significantly affected by age is the gut. Age-dependent changes of the gut-associated microbiome have been linked to increased frailty and systemic inflammation. This change in microbial composition with age occurs in parallel with a decline in function of the gut immune system, however it is not clear if there is a causal link between the two. Here we report that the defective germinal centre reaction in Peyer’s patches of aged mice can be rescued by faecal transfers from younger adults into aged mice and by immunisations with cholera toxin, without affecting germinal centre reactions in peripheral lymph nodes. This demonstrates that the poor germinal centre reaction in aged animals is not irreversible, and that it is possible to improve this response in older individuals by providing appropriate stimuli
    corecore